QUANTA: A Quantum-Resistant Blockchain Protocol
Version 1.0
January 2026

Abstract
QUANTA is a quantum-resistant blockchain protocol designed to withstand attacks from both classical and quantum computers. Built on post-quantum cryptographic primitives, QUANTA implements an account-based transaction model with smart contract capabilities, proof-of-work consensus, and comprehensive security features. The protocol utilizes Falcon-512 digital signatures and Kyber-1024 encryption to ensure long-term security in a post-quantum computing era.

1. Introduction
1.1 Motivation
Current blockchain systems rely on cryptographic primitives (ECDSA, RSA) that will become vulnerable once large-scale quantum computers exist. Shor’s algorithm can break these systems in polynomial time, threatening the security of trillions of dollars in digital assets. QUANTA addresses this existential threat by implementing quantum-resistant cryptography from the ground up.
1.2 Design Goals
· Quantum Resistance: Use NIST-standardized post-quantum algorithms
· Account-Based Model: Ethereum-style accounts for smart contract compatibility
· Security First: DoS protection, anti-spam measures, and consensus safeguards
· Simplicity: Clean, auditable codebase with minimal dependencies
· Performance: 10-second block times with efficient state management

2. Cryptographic Primitives
2.1 Digital Signatures: Falcon-512
QUANTA uses Falcon-512 for transaction signing and verification:
· Algorithm: Fast Fourier lattice-based signatures
· Security Level: NIST Level 1 (128-bit quantum security)
· Public Key Size: 897 bytes
· Signature Size: ~666 bytes
· Verification: Fast polynomial-time verification
Rationale: Falcon offers the smallest signature sizes among NIST post-quantum signature finalists, making it practical for blockchain applications where signature data is stored permanently.
2.2 Hashing: SHA3-256
All hashing operations use SHA3-256 (Keccak):
· Collision Resistance: 256-bit security
· Preimage Resistance: 256-bit security
· Quantum Resistance: Grover’s algorithm reduces to 128-bit effective security (still secure)
Applications: - Block hashing - Transaction hashing - Merkle tree construction - Address derivation - Proof-of-work
2.3 Wallet Encryption: Kyber-1024 + ChaCha20-Poly1305
Wallet files are encrypted using:
· Key Encapsulation: Kyber-1024 (NIST Level 5, 256-bit quantum security)
· Symmetric Encryption: ChaCha20-Poly1305 AEAD
· Key Derivation: Argon2id (memory-hard, GPU-resistant)

3. Account-Based Transaction Model
3.1 Design Choice: Accounts vs. UTXO
QUANTA implements an account-based model (like Ethereum) rather than UTXO (like Bitcoin):
Advantages: - Simpler state management (balance + nonce per address) - Native smart contract support - Lower storage overhead (no UTXO set growth) - Easier replay protection (nonce-based) - More intuitive for users
Trade-offs: - Less privacy (account history linkable) - Requires nonce management
3.2 Account State
Each account maintains:
struct AccountBalance {
 address: String, // 0x + 40 hex chars (derived from public key)
 balance: u64, // Spendable balance in microunits (1 QUA = 1,000,000 microunits)
 nonce: u64, // Replay protection counter
 locked_balance: u64, // Coinbase rewards awaiting maturity
 unlock_height: u64, // Block height for locked balance unlock
}
3.3 Transaction Structure
struct Transaction {
 sender: String, // Sender address (derived from public_key)
 recipient: String, // Recipient address
 amount: u64, // Amount in microunits
 timestamp: i64, // Unix timestamp
 signature: Vec<u8>, // Falcon-512 signature (~666 bytes)
 public_key: Vec<u8>, // Falcon-512 public key (~897 bytes)
 fee: u64, // Transaction fee in microunits
 nonce: u64, // Sender's account nonce
 tx_type: TransactionType, // Transfer, DeployContract, or CallContract
}
3.4 Transaction Types
1. Transfer: Standard value transfer between accounts
· Fee: 0.001 QUA (1,000 microunits)
1. DeployContract: Deploy smart contract bytecode
· Fee: 0.01 QUA (10,000 microunits)
· Includes contract code in transaction
1. CallContract: Execute smart contract function
· Fee: 0.005 QUA (5,000 microunits)
· Includes function name and arguments
3.5 Address Derivation
Addresses are derived from public keys:
address = 0x + hex(SHA3-256(public_key)[0..20])
· Format: 0x + 40 hex characters (20 bytes)
· Security: Collision resistance from SHA3-256
· Verification: Sender must prove public key ownership via signature
3.6 Transaction Validation
Transaction validity requires:
1. Valid Falcon-512 signature
1. Sender address matches public key
1. Sufficient balance (amount + fee)
1. Correct nonce (prevents replay attacks)
1. Not expired (24-hour expiry window)
1. Fee ≥ minimum (0.0001 QUA anti-spam)
1. Size ≤ 100KB (DoS prevention)

4. Smart Contracts
4.1 Contract Support
QUANTA includes basic smart contract infrastructure:
· Contract deployment via DeployContract transactions
· Contract invocation via CallContract transactions
· Contract state management
· Higher fees to prevent spam
4.2 Contract Deployment
TransactionType::DeployContract {
 code: Vec<u8> // Contract bytecode
}
· Fee: 10x standard transfer fee (0.01 QUA)
· Storage: Contract code stored in blockchain state
· Address: Derived from deployer + nonce
4.3 Contract Execution
TransactionType::CallContract {
 contract: String, // Contract address
 function: String, // Function name
 args: Vec<u8> // Serialized arguments
}
· Fee: 5x standard transfer fee (0.005 QUA)
· Gas Metering: Future work (currently unlimited execution)
4.4 Limitations (Current Version)
Alpha Stage: Smart contracts are not fully implemented: - No VM or bytecode interpreter - No gas metering - No contract state queries - Transaction types exist but execution is placeholder
Roadmap: Full smart contract support planned for v2.0

5. Consensus: Proof-of-Work
5.1 Mining Algorithm
QUANTA uses SHA3-256-based proof-of-work:
valid_block SHA3-256(SHA3-256(block_header)) < target
Properties: - Quantum Resistance: Grover’s algorithm provides only quadratic speedup - ASIC Neutrality: Standard SHA3 hardware - Fairness: No secret optimizations
5.2 Difficulty Adjustment
Dynamic difficulty adjustment maintains 10-second block times:
TARGET_BLOCK_TIME = 10 seconds
DIFFICULTY_ADJUSTMENT_INTERVAL = 10 blocks
Algorithm:
expected_time = 10 blocks × 10 seconds = 100 seconds
actual_time = last_10_blocks.time_elapsed()
difficulty_new = difficulty_old × (expected_time / actual_time)
Bounds: - Maximum increase: 4x per adjustment - Maximum decrease: 4x per adjustment
5.3 Block Rewards
Mining rewards follow a halving schedule:
INITIAL_REWARD = 50 QUA
HALVING_INTERVAL = 210 blocks
Schedule: - Blocks 0-209: 50 QUA - Blocks 210-419: 25 QUA - Blocks 420-629: 12.5 QUA - And so on…
Total Supply: ~21,000 QUA (asymptotic limit)
5.4 Coinbase Maturity
Mining rewards are locked for 100 blocks:
COINBASE_MATURITY = 100 blocks
Rationale: Prevents spending rewards from orphaned blocks during reorganizations.

6. Block Structure
6.1 Block Format
struct Block {
 index: u64, // Block height
 timestamp: i64, // Unix timestamp
 transactions: Vec<Transaction>, // Block transactions
 previous_hash: String, // Parent block hash
 hash: String, // This block's hash
 nonce: u64, // Proof-of-work nonce
 difficulty: u64, // Mining difficulty
 merkle_root: String, // Merkle root of transactions
}
6.2 Merkle Trees
Transaction integrity is verified using Merkle trees:
· Algorithm: Binary Merkle tree with SHA3-256
· Purpose: Efficient SPV (Simplified Payment Verification)
· Proof Size: O(log n) for n transactions
Merkle Proof: Allows proving transaction inclusion without downloading full block.
6.3 Genesis Block
Hardcoded Genesis Hash:
527a8a6ad3292c9b42c40f3d71fd3b89cdd79415106ce0b8d9f7f6690a96433d
Parameters: - Timestamp: 1735689600 (2026-01-01 00:00:00 UTC) - Difficulty: 6 - Genesis allocation: 1000 QUA to 0x0000...0000
Security: Genesis hash hardcoded to prevent chain-split attacks.

7. Security Features
7.1 DoS Protection
	Attack Vector
	Mitigation
	Parameter

	Mempool flooding
	Size limit
	5,000 transactions max

	Large blocks
	Block size limit
	1 MB maximum

	Transaction spam
	Minimum fee
	0.0001 QUA

	Large transactions
	Transaction size limit
	100 KB maximum

	Too many tx/block
	Transaction count limit
	2,000 per block

	Slow requests
	Request timeout
	30 seconds

7.2 Replay Protection
Nonce-Based System: - Each account maintains a nonce counter - Transactions must use nonce = account_nonce + 1 - Prevents transaction replay attacks - Enforces transaction ordering
Time-Based Expiry: - Transactions expire after 24 hours - Prevents old signed transactions from being valid indefinitely
7.3 Signature Verification
Multi-layer signature validation:
1. Structural Check: Non-empty signature and public key
1. Address Binding: Sender address must match public key hash
1. Cryptographic Verification: Falcon-512 signature verification
1. Replay Check: Nonce and expiry validation
7.4 Double-Spend Prevention
Account-based model prevents double-spending via:
1. Balance Checks: Insufficient balance transactions rejected
1. Nonce Ordering: Transactions processed in nonce order
1. Atomic Updates: State changes are all-or-nothing
1. Longest Chain Rule: Fork resolution via cumulative difficulty
7.5 Block Validation
Blocks are rejected if:
· Invalid proof-of-work
· Incorrect difficulty
· Invalid coinbase reward amount
· Timestamp too far in future (>2 hours)
· Parent block not found
· Transaction validation failures
· Merkle root mismatch

8. Network Architecture
8.1 P2P Protocol
QUANTA implements a decentralized peer-to-peer network:
· Protocol: TCP-based with JSON message framing
· Discovery: Bootstrap nodes + peer exchange
· Topology: Mesh network (each node connects to multiple peers)
8.2 Message Types
1. GetPeers: Request peer list
1. Peers: Response with known peers
1. GetBlocks: Request blocks by height range
1. Blocks: Response with block data
1. NewBlock: Broadcast new mined block
1. NewTransaction: Broadcast new transaction
8.3 Synchronization
New nodes synchronize via:
1. Connect: Join network via bootstrap node
1. Discovery: Request peer list from neighbors
1. Headers: Download block headers (fast)
1. Validation: Verify proof-of-work chain
1. State Sync: Download full blocks and build account state
1. Mempool: Request pending transactions
8.4 Fork Resolution
Longest Chain Rule with cumulative difficulty:
chain_score = Σ difficulty[i] for all blocks
· Nodes follow chain with highest cumulative difficulty
· Orphaned blocks stored temporarily for reorganization
· Maximum reorg depth: Limited by storage

9. Storage Layer
9.1 Database: Sled
QUANTA uses Sled embedded database:
· Type: Persistent key-value store
· ACID: Atomic transactions
· Performance: Lock-free concurrent access
· Crash Recovery: Write-ahead logging
9.2 Storage Layout
Keys: - chain: Blockchain (JSON array of blocks) - account_state: Account balances and nonces - mempool: Pending transactions - orphaned_blocks: Competing chain blocks
Size Optimization: - JSON serialization (human-readable, debuggable) - Future: Binary serialization for production
9.3 State Management
Account State Updates: 1. Load current state from DB 2. Apply block transactions (debit sender, credit recipient) 3. Update nonces 4. Save new state atomically
Crash Recovery: - State reconstructible from blockchain - No separate state checkpoints needed (yet)

10. API Interface
10.1 REST API
HTTP JSON API for wallet and node interaction:
	Endpoint
	Method
	Purpose

	/health
	GET
	Node health check and status

	/api/stats
	GET
	Blockchain statistics

	/api/balance
	POST
	Query account balance

	/api/mine
	POST
	Mine single block

	/api/mine/start
	POST
	Start continuous mining

	/api/mine/stop
	POST
	Stop mining

	/api/mine/status
	GET
	Mining status

	/api/block/:height
	GET
	Get block by height

	/api/mempool
	GET
	View pending transactions

	/api/peers
	GET
	List connected peers

10.2 Health Check Response
{
 "status": "healthy",
 "block_height": 42,
 "peers": 3,
 "mempool_size": 15,
 "uptime_seconds": 3600
}

11. Wallet Features
11.1 HD Wallets (BIP39 Compatible)
QUANTA supports hierarchical deterministic wallets:
· Mnemonic: BIP39 24-word seed phrases
· Derivation: BIP32-like path derivation
· Multiple Addresses: Generate unlimited addresses from one seed
11.2 Wallet Encryption
Wallet files are encrypted with quantum-resistant cryptography:
1. Password → Argon2id → 256-bit key
2. Generate Kyber-1024 keypair
3. Encapsulate symmetric key with Kyber
4. Encrypt wallet data with ChaCha20-Poly1305
5. Store: Kyber ciphertext || ChaCha20 ciphertext || Poly1305 tag
Security Properties: - Quantum-resistant: Kyber-1024 KEM - Authenticated: Poly1305 MAC prevents tampering - Password protection: Argon2id prevents brute-force
11.3 Multisig Support
Planned Feature: M-of-N multisignature transactions - Multiple Falcon keypairs - Threshold signing - Enhanced security for high-value accounts

12. Economic Model
12.1 Unit System
1 QUA = 1,000,000 microunits
Rationale: - Precision for micro-transactions - Avoids floating-point arithmetic (security risk) - All amounts stored as u64 integers
12.2 Transaction Fees
	Transaction Type
	Base Fee
	Purpose

	Transfer
	0.001 QUA
	Standard payments

	Deploy Contract
	0.01 QUA
	Anti-spam for contract deployment

	Call Contract
	0.005 QUA
	Contract execution

Fee Market: - Transactions sorted by fee (highest first) - Miners prioritize higher-fee transactions - Market-based congestion control
12.3 Supply Schedule
Total Supply: ~21,000 QUA
Distribution: - Mining rewards (100%): Proof-of-work only - No pre-mine - No ICO - No foundation allocation
Inflation Rate: - Year 1: ~50% (bootstrap phase) - Year 2: ~25% - Asymptotically approaches 0%

13. Performance Characteristics
13.1 Throughput
Current: - Block time: 10 seconds - Block size: 1 MB max - Transactions/block: ~2,000 max - Throughput: ~200 TPS (transactions per second)
Bottlenecks: - Signature verification (Falcon-512): ~1ms per transaction - Network latency: Block propagation time - Storage I/O: State updates
13.2 Scalability Considerations
Limitations: - Single-threaded consensus - Full node storage grows linearly - No sharding or layer-2
Future Work: - Parallel signature verification - State pruning - Light client support (SPV via Merkle proofs) - Layer-2 solutions

14. Future Development
14.1 Roadmap
Version 1.0 (Current): - Post-quantum signatures (Falcon-512) - Account-based model - Proof-of-work consensus - P2P networking - Basic smart contract types - Encrypted wallets
Version 2.0 (Planned): - ⏳ Smart contract VM (WASM-based) - ⏳ Gas metering and limits - ⏳ Contract state queries - ⏳ Enhanced smart contract security
Version 3.0 (Research): - Proof-of-stake transition - Sharding for horizontal scaling - Zero-knowledge proofs for privacy - Cross-chain bridges
14.2 Research Directions
1. Post-Quantum Zero-Knowledge: Lattice-based ZK-SNARKs
1. Quantum-Resistant Multisig: Threshold Falcon signatures
1. Light Clients: Efficient SPV with Merkle proofs
1. State Channels: Layer-2 for instant payments

15. Security Considerations
15.1 Quantum Threat Model
Assumptions: - Large-scale quantum computers exist (50+ logical qubits) - Shor’s algorithm breaks RSA/ECDSA - Grover’s algorithm reduces hash security by 50%
Mitigations: - Falcon-512 signatures (lattice-based, quantum-resistant) - SHA3-256 hashing (128-bit quantum security via Grover) - Kyber-1024 wallet encryption (256-bit quantum security)
15.2 Known Limitations
1. Transaction Size: Large Falcon signatures (~666 bytes) reduce throughput
1. Smart Contracts: VM not implemented (security risk if rushed)
1. Privacy: Account model reveals transaction graph
1. Centralization Risk: Mining may centralize with ASICs
15.3 Audit Status
Current: Internal security review completed Needed: - External cryptographic audit - Smart contract security audit (before v2.0) - Formal verification of consensus logic

16. Comparison to Other Blockchains
	Feature
	QUANTA
	Bitcoin
	Ethereum

	Signatures
	Falcon-512 (PQ)
	ECDSA
	ECDSA

	Quantum-Resistant
	Yes
	No
	No

	Transaction Model
	Accounts
	UTXO
	Accounts

	Smart Contracts
	Basic (v1.0)
	No
	Full

	Consensus
	PoW (SHA3)
	PoW (SHA256)
	PoS

	Block Time
	10 seconds
	10 minutes
	12 seconds

	Supply Cap
	~21,000 QUA
	21M BTC
	∞ (inflationary)

17. Conclusion
QUANTA represents a pragmatic approach to quantum-resistant blockchain design. By combining NIST-standardized post-quantum cryptography with a proven account-based transaction model, QUANTA offers a secure foundation for decentralized applications in the post-quantum era.
Key Innovations: 1. Full Quantum Resistance: Falcon + Kyber + SHA3 2. Account Model: Smart contract compatibility 3. Security-First Design: Comprehensive DoS protections 4. Production-Ready: Persistent storage, crash recovery, health monitoring
While smart contract functionality is currently in alpha stage, the core blockchain infrastructure is production-ready and quantum-secure. QUANTA provides a solid foundation for building the next generation of decentralized applications.

18. References
1. NIST Post-Quantum Cryptography: https://csrc.nist.gov/projects/post-quantum-cryptography
1. Falcon Specification: https://falcon-sign.info/
1. Kyber Specification: https://pq-crystals.org/kyber/
1. SHA-3 Standard: FIPS 202
1. BIP39 Mnemonic: Bitcoin Improvement Proposal 39
1. Merkle Trees: Original Bitcoin whitepaper (Satoshi Nakamoto)

Appendix A: Constants Reference
// Consensus
TARGET_BLOCK_TIME = 10 seconds
DIFFICULTY_ADJUSTMENT_INTERVAL = 10 blocks
INITIAL_MINING_REWARD = 50 QUA
HALVING_INTERVAL = 210 blocks

// Security Limits
MAX_MEMPOOL_SIZE = 5,000 transactions
MAX_BLOCK_TRANSACTIONS = 2,000 transactions
MAX_BLOCK_SIZE_BYTES = 1 MB (1,048,576 bytes)
MAX_TRANSACTION_SIZE_BYTES = 100 KB (102,400 bytes)
MIN_TRANSACTION_FEE = 0.0001 QUA (100 microunits)
TRANSACTION_EXPIRY_SECONDS = 24 hours (86,400 seconds)
COINBASE_MATURITY = 100 blocks
MAX_FUTURE_BLOCK_TIME = 2 hours (7,200 seconds)

// Genesis
GENESIS_HASH = "527a8a6ad3292c9b42c40f3d71fd3b89cdd79415106ce0b8d9f7f6690a96433d"
GENESIS_TIMESTAMP = 1735689600 (2026-01-01 00:00:00 UTC)
GENESIS_DIFFICULTY = 6

Appendix B: Contact & Contributing
Repository: https://github.com/xaexaex/quanta
License: MIT
Contributing: See CONTRIBUTING.md
Security: Report vulnerabilities to contact@quantachain.org

This whitepaper describes QUANTA v1.0 as of January 2026. Specifications subject to change in future versions.
